详细信息
First-principle calculations of electronic and optical properties of Ti-doped β-Ga2O3 with intrinsic defects ( EI收录)
文献类型:期刊文献
英文题名:First-principle calculations of electronic and optical properties of Ti-doped β-Ga2O3 with intrinsic defects
作者:Zhang, Zhendong Ding, Zhao Guo, Xiang Luo, Zijiang Wei, Jiemin Yang, Chen Huang, Yanbin Li, Zhihong
第一作者:Zhang, Zhendong
通信作者:Ding, Zhao
机构:[1] College of Big Data and Information Engineering, Guizhou University, Guiyang, 550025, China; [2] School of Information, Guizhou University of Finance and Economics, Guiyang, 550025, China; [3] School of Electrical and Information Engineering, Guizhou Institute of Technology, Guiyang, 550025, China; [4] Key Laboratory of Micro-Nano-Electronics of Guizhou Province, Guizhou University, Guiyang, 550025, China; [5] Power Semiconductor Device Reliability Engineering Center of the Ministry of Education, Guizhou University, Guiyang, 550025, China
第一机构:College of Big Data and Information Engineering, Guizhou University, Guiyang, 550025, China
年份:2019
卷号:6
期号:10
外文期刊名:Materials Research Express
收录:EI(收录号:20194007484050);Scopus(收录号:2-s2.0-85072709172)
基金:Zhendong Zhang Zhao Ding Xiang Guo Zijiang Luo Jiemin Wei Chen Yang Yanbin Huang Zhihong Li Zhendong Zhang Zhao Ding Xiang Guo Zijiang Luo Jiemin Wei Chen Yang Yanbin Huang Zhihong Li College of Big Data and Information Engineering, Guizhou University, Guiyang 550025, People’s Republic of China School of Information, Guizhou University of Finance and Economics, Guiyang 550025, People’s Republic of China School of Electrical and Information Engineering, Guizhou Institute of Technology, Guiyang 550025, People’s Republic of China Key Laboratory of Micro-Nano-Electronics of Guizhou Province, Guizhou University, Guiyang 550025, People’s Republic of China Power Semiconductor Device Reliability Engineering Center of the Ministry of Education, Guizhou University, Guiyang 550025, People’s Republic of China Zhendong Zhang, Zhao Ding, Xiang Guo, Zijiang Luo, Jiemin Wei, Chen Yang, Yanbin Huang and Zhihong Li 2019-10-01 2019-09-18 15:14:46 cgi/release: Article released bin/incoming: New from .zip National Natural Science Foundation of China https://doi.org/10.13039/501100001809 11664005 61564002 61604046 yes The crystal structures, electronic structures and optical properties of Ti-doped β -Ga 2 O 3 with intrinsic defects are investigated by first-principle calculations based on density functional theory and the compensation effect between Ti dopant and intrinsic defects is discussed. Four defective structures of Ti-doped β -Ga 2 O 3 include Ti Ga2O3 O i (O interstitial), Ti Ga2O3 Ga i (Ga interstitial), Ti Ga2O3 V O (O vacancy) and Ti Ga2O3 V Ga (Ga vacancy). The calculation results show that Ti dopant acts as an effective n-type dopant and makes the material more conductive. Besides, the defect formation energies of interstitial O and interstitial Ga are low under specific conditions, indicating that Ti Ga2O3 O i and Ti Ga2O3 Ga i are relatively stable. Interstitial O atom would compensate with Ti dopant and reduce the n-type conductivity of material, while interstitial Ga can enhance the n-type conduction of Ti-doped β -Ga 2 O 3 . After Ti-doping, the intrinsic absorption edge shows a slight red-shift compared with intrinsic β -Ga 2 O 3 . In addition, the optical absorption edge of defective structures (except Ti Ga2O3 Ga i ) are red-shifted relative to Ti-doped β -Ga 2 O 3 . ? 2019 IOP Publishing Ltd [1] Geller S 1960 J. Chem. Phys. 33 676 10.1063/1.1731237 Geller S J. Chem. Phys. 33 1960 676 [2] Su J, Guo R, Lin Z, Zhang S, Zhang J, Chang J and Hao Y 2018 J. Phys. Chem. C 122 24592 10.1021/acs.jpcc.8b08650 Su J, Guo R, Lin Z, Zhang S, Zhang J, Chang J and Hao Y J. Phys. Chem. 1932-7447 122 C 2018 24592 [3] Green A et al 2016 IEEE Electron Device Lett. 37 902 10.1109/LED.2016.2568139 Green A et al IEEE Electron Device Lett. 0741-3106 37 2016 902 [4] Wong M, Sasaki K, Kuramata A, Yamakoshi S and Higashiwaki M 2015 IEEE Electron Device Lett. 37 212 10.1109/LED.2015.2512279 Wong M, Sasaki K, Kuramata A, Yamakoshi S and Higashiwaki M IEEE Electron Device Lett. 0741-3106 37 2015 212 [5] Zeng K, Vaidya A and Singisetti U 2018 IEEE Electron Device Lett. 39 1385 10.1109/LED.2018.2859049 Zeng K, Vaidya A and Singisetti U IEEE Electron Device Lett. 0741-3106 39 2018 1385 [6] Zhao X, Wu Z, Zhi Y, An Y, Cui W, Li L and Tang W 2017 J. Phys. D: Appl. Phys. 50 085102 10.1088/1361-6463/aa5758 Zhao X, Wu Z, Zhi Y, An Y, Cui W, Li L and Tang W J. Phys. D: Appl. Phys. 0022-3727 50 8 085102 2017 [7] Wu Z, Bai G, Qu Y, Guo D, Li L, Li P, Hao J and Tang W 2016 Appl. Phys. Lett. 108 211903 10.1063/1.4952618 Wu Z, Bai G, Qu Y, Guo D, Li L, Li P, Hao J and Tang W Appl. Phys. Lett. 108 211903 2016 [8] Villora E, Shimamura K, Yoshikawa Y, Ujiie T and Aoki K 2008 Appl. Phys. Lett. 92 202120 10.1063/1.2919728 Villora E, Shimamura K, Yoshikawa Y, Ujiie T and Aoki K Appl. Phys. Lett. 92 202120 2008 [9] Yan H, Guo Y, Song Q and Chen Y 2014 Physica B 434 181 10.1016/j.physb.2013.11.024 Yan H, Guo Y, Song Q and Chen Y Physica 0921-4526 434 B 2014 181 [10] Gonzalo A, Nogales E, Méndez B and Piqueras J 2014 Phys. Status Solidi A 211 494 10.1002/pssa.201300310 Gonzalo A, Nogales E, Méndez B and Piqueras J Phys. Status Solidi 0031-8965 211 A 2014 494 [11] Dakhel A and Alnaser W 2013 Microelectron. Reliab. 53 676 10.1016/j.microrel.2013.01.010 Dakhel A and Alnaser W Microelectron. Reliab. 0026-2714 53 2013 676 [12] Dakhel A 2013 Solid State Sci. 20 54 10.1016/j.solidstatesciences.2013.03.009 Dakhel A Solid State Sci. 1293-2558 20 2013 54 [13] Dong L, Jia R, Xin B, Peng B and Zhang Y 2017 Sci. Rep. 7 40160 10.1038/srep40160 Dong L, Jia R, Xin B, Peng B and Zhang Y Sci. Rep. 7 2017 40160 [14] Dong L, Jia R, Xin B and Zhang Y 2016 J. Vac. Sci. Technol., A 34 060602 10.1116/1.4963376 Dong L, Jia R, Xin B and Zhang Y J. Vac. Sci. Technol., 0734-2101 34 A 060602 2016 [15] Zacherle T, Schmidt P and Martin M 2013 Phys. Rev. B 87 235206 10.1103/PhysRevB.87.235206 Zacherle T, Schmidt P and Martin M Phys. Rev. 87 B 235206 2013 [16] Vanderbilt D 1990 Phys. Rev. B 41 7892 10.1103/PhysRevB.41.7892 Vanderbilt D Phys. Rev. 0163-1829 41 B 1990 7892 [17] Perdew J, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 10.1103/PhysRevLett.77.3865 Perdew J, Burke K and Ernzerhof M Phys. Rev. Lett. 77 1996 3865 [18] Segall M, Probert P, Pickard C, Hasnip P, Clark S and Payne M 2002 J. Phys.: Condens. Matter 14 2717 10.1088/0953-8984/14/11/301 Segall M, Probert P, Pickard C, Hasnip P, Clark S and Payne M J. Phys.: Condens. Matter 0953-8984 14 11 301 2002 2717 [19] Ma X, Zhang Y, Dong L and Jia R 2017 Results Phys. 7 1582 10.1016/j.rinp.2017.04.023 Ma X, Zhang Y, Dong L and Jia R Results Phys. 7 2017 1582 [20] He H, Orlando R, Blanco M, Pandey R, Amzallag E, Baraille I and Rerat M 2006 Phys. Rev. B 74 195123 10.1103/PhysRevB.74.195123 He H, Orlando R, Blanco M, Pandey R, Amzallag E, Baraille I and Rerat M Phys. Rev. 74 B 195123 2006 [21] ?hman J, Svensson G and Albertsson J 1996 Acta Cryst. C 52 1336 10.1107/S0108270195016404 ?hman J, Svensson G and Albertsson J Acta Cryst. 0108-2701 52 C 1996 1336 [22] Dong L, Jia R, Li C, Xin B and Zhang Y 2017 J. Alloys Compd. 712 379 10.1016/j.jallcom.2017.04.020 Dong L, Jia R, Li C, Xin B and Zhang Y J. Alloys Compd. 0925-8388 712 2017 379 [23] Walle C and Neugebauer J 2004 J. Appl. Phys. 95 3851 10.1063/1.1682673 Walle C and Neugebauer J J. Appl. Phys. 95 2004 3851 [24] Sun D, Gao Y, Xue J and Zhao J 2019 J. Alloys Compd. 794 374 10.1016/j.jallcom.2019.04.253 Sun D, Gao Y, Xue J and Zhao J J. Alloys Compd. 0925-8388 794 2019 374 [25] Wang Y, Xian Y, Wen S, Deng J and Wu D 2017 J. Alloys Compd. 708 982 10.1016/j.jallcom.2017.03.072 Wang Y, Xian Y, Wen S, Deng J and Wu D J. Alloys Compd. 0925-8388 708 2017 982 [26] Fang Y, Kong X, Wang D, Cui S and Liu J 2018 Chinese J. Phys. 56 1370 10.1016/j.cjph.2018.04.011 Fang Y, Kong X, Wang D, Cui S and Liu J Chinese J. Phys. 0577-9073 56 2018 1370 [27] Wong M, Takeyama A, Makino T, Ohshima T, Sasaki K, Kuramata A, Yamakoshi S and Higashiwaki M 2018 Appl. Phys. Lett. 112 023503 10.1063/1.5017810 Wong M, Takeyama A, Makino T, Ohshima T, Sasaki K, Kuramata A, Yamakoshi S and Higashiwaki M Appl. Phys. Lett. 112 023503 2018 [28] Zhang L, Yan J, Zhang Y, Li T and Ding X 2012 Physica B 407 1227 10.1016/j.physb.2012.01.107 Zhang L, Yan J, Zhang Y, Li T and Ding X Physica 0921-4526 407 B 2012 1227
语种:英文
外文关键词:Density functional theory - Electronic structure - Light absorption - Red Shift
摘要:The crystal structures, electronic structures and optical properties of Ti-doped β-Ga2O3 with intrinsic defects are investigated by first-principle calculations based on density functional theory and the compensation effect between Ti dopant and intrinsic defects is discussed. Four defective structures of Ti-doped β-Ga2O3 include TiGa2O3Oi (O interstitial), TiGa2O3Gai (Ga interstitial), TiGa2O3VO (O vacancy) and TiGa2O3VGa (Ga vacancy). The calculation results show that Ti dopant acts as an effective n-type dopant and makes the material more conductive. Besides, the defect formation energies of interstitial O and interstitial Ga are low under specific conditions, indicating that TiGa2O3Oi and TiGa2O3Gai are relatively stable. Interstitial O atom would compensate with Ti dopant and reduce the n-type conductivity of material, while interstitial Ga can enhance the n-type conduction of Ti-doped β-Ga2O3. After Ti-doping, the intrinsic absorption edge shows a slight red-shift compared with intrinsic β-Ga2O3. In addition, the optical absorption edge of defective structures (except TiGa2O3Gai) are red-shifted relative to Ti-doped β-Ga2O3 ? 2019 IOP Publishing Ltd.
参考文献:
正在载入数据...