详细信息
基于分布估计算法优化极限学习机的干旱预测研究 被引量:2
Drought prediction based on extreme learning machine optimized by distribution algorithm estimation
文献类型:期刊文献
中文题名:基于分布估计算法优化极限学习机的干旱预测研究
英文题名:Drought prediction based on extreme learning machine optimized by distribution algorithm estimation
第一作者:周靖楠
机构:[1]贵州理工学院理学院,贵州贵阳550001;[2]贵州省松柏山水库管理处,贵州贵阳550025;[3]贵州理工学院土木工程学院,贵州贵阳550001
第一机构:贵州理工学院理学院
年份:2023
卷号:44
期号:7
起止页码:8-14
中文期刊名:水利水电快报
外文期刊名:Express Water Resources & Hydropower Information
基金:贵州省省级科技计划项目(黔科合基础-ZK[2021]一般295);贵州省水利厅科技专项经费项目(KT202232);贵州理工学院高层次人才科研启动项目(XJGC20210425);贵州理工学院大学生创新创业项目(S202114440058)。
语种:中文
中文关键词:干旱预测;ELM;EDA;贵州省
外文关键词:drought prediction;ELM;EDA;Guizhou Province
摘要:构建适用的干旱预测模型是保障用水安全与粮食安全的关键。针对极限学习机在干旱预测中存在稳定性差等问题,构建了分布估计算法优化极限学习机模型。基于海温指数优选出关键模型输入,以标准化降水蒸散发指数作为模型输出,对贵州省的干旱情势进行了预测。结果表明:标准化降水蒸散发指数是评价贵州省干旱的有效指数;海温指数是预测贵州省干旱的有效变量,且其具有良好的前兆指示作用,最大提前期长达15个月;同等条件下,分布估计算法优化极限学习机的预测效果优于遗传算法优化极限学习机,该模型可为贵州省的抗旱减灾工作提供技术支撑。
To construct a suitable drought prediction model is the key to ensure the safety of water and food security,aiming at the problem of poor stability of limit learning machine in drought prediction,a limit distribution estimation algorithm was constructed to optimize the machine learning model.The model based on SST index was selected as the key input and standardized precipitation evaporation index as the model output to analyze the drought situation in Guizhou Province.For drought evaluation in Guizhou Province,and it had a good precursory effect,with a maximum lead time of 15 months.On equal terms,the prediction effect of distribution estimation algorithm optimized extreme learning machine was better than that of genetic algorithm optimized extreme learning machine.The model can provide necessary technical support for drought resistance and disaster reduction in Guizhou Province.
参考文献:
正在载入数据...