登录    注册    忘记密码

详细信息

On Positive Periodic Solutions to Nonlinear Fifth-Order Differential Equations with Six Parameters  ( SCI-EXPANDED收录)  

文献类型:期刊文献

英文题名:On Positive Periodic Solutions to Nonlinear Fifth-Order Differential Equations with Six Parameters

作者:Wang, Yunhai Wang, Fanglei

第一作者:王云海

通信作者:Wang, YH[1]

机构:[1]Guizhou Inst Technol, Coll Mech Engn, Guiyang 550003, Peoples R China;[2]Hohai Univ, Coll Sci, Nanjing 210098, Jiangsu, Peoples R China

第一机构:贵州理工学院机械工程学院

通信机构:corresponding author), Guizhou Inst Technol, Coll Mech Engn, Guiyang 550003, Peoples R China.|贵州理工学院机械工程学院;贵州理工学院;

年份:2016

卷号:2016

外文期刊名:JOURNAL OF FUNCTION SPACES

收录:;Scopus(收录号:2-s2.0-84962867044);WOS:【SCI-EXPANDED(收录号:WOS:000373150700001)】;

基金:The first author is supported by Doctoral Scientific Research Foundation of Guizhou Province, The Joint Science and Technology FundQKH[2014, 7366]. The second author is supported by by NSF of China (no. 11501165), NSF of Jiangsu Province (no. BK20130825), and the Fundamental Research Funds for the Central Universities.

语种:英文

摘要:We study the existence and multiplicity of positive periodic solutions to the nonlinear differential equation: u((5))(l) + ku((4))(l)-beta u((3)) - xi u ''(t) + alpha u'(t) + omega u(t) = lambda h(t) f (u), in 0 <= t <= 1, u(1)(0) = u(1)(1), i = 0, 1, 2, 3, 4, where k, alpha, omega, lambda > 0, beta, xi is an element of R, h is an element of C(R,R) is a 1-periodic function. The proof is based on the Krasnoselskii fixed point theorem.

参考文献:

正在载入数据...

版权所有©贵州理工学院 重庆维普资讯有限公司 渝B2-20050021-8 
渝公网安备 50019002500408号 违法和不良信息举报中心