详细信息
不相称分数阶多智能体系统的领导跟随一致性分析
A Leader-Following Consensus Analysis of Incommensurate Fractional-Order Multi-Agent Systems
文献类型:期刊文献
中文题名:不相称分数阶多智能体系统的领导跟随一致性分析
英文题名:A Leader-Following Consensus Analysis of Incommensurate Fractional-Order Multi-Agent Systems
作者:杨慧 龙飞
第一作者:杨慧
机构:[1]贵州大学电气工程学院,贵州贵阳550025;[2]贵州理工学院人工智能与电气工程学院,贵州贵阳550003
第一机构:贵州大学电气工程学院,贵州贵阳550025
年份:2025
卷号:28
期号:12
起止页码:59-64
中文期刊名:软件工程
外文期刊名:Software Engineering
语种:中文
中文关键词:领导跟随一致性;不相称分数阶系统;分数阶多智能体;控制协议
外文关键词:leader-following consensus;incommensurate fractional-order systems;fractional-order multi-agent systems;control protocol
摘要:针对分数阶导数α相同,但状态变量的分量对应的分数阶导数αi,i∈{1,2,…,n}不同的一类不相称分数阶多智能体系统在有向图中的领导跟随一致性问题,提出了一种新的控制方法,通过将一致性问题转化为不相称分数阶系统的稳定性问题。基于李雅普诺夫稳定性理论,提出了线性矩阵不等式条件来确定控制器增益与基于观测器的控制器增益,并证明了新方法的领导跟随一致性。由数值仿真结果可知,仿真系统仅需约25s即可达到稳定状态,证明该方法能够有效实现领导跟随一致性,验证了该方法的理论结果。
This paper addresses the leader-following consensus problem for a class of incommensurate fractionalorder multi-agent systems in directed graphs,where the fractional-order derivatives of the components of the state variables are different despite the same fractional-orderαA novel control approach is proposed by transforming the consensus problem into a stability problem of incommensurate fractional-order systems.Based on Lyapunov stability theory,linear matrix inequality conditions are established to determine the controller gain and observer-based controller gain,and leader-following consensus is proven.Numerical simulation results show that the system stabilizes in approximately 25 seconds,demonstrating the effectiveness of the proposed method in achieving leader-following consensus and validating the theoretical results.
参考文献:
正在载入数据...
