详细信息
基于AHP-TOPSIS的小型坚硬隧道开挖掏槽方案优选 被引量:1
Scheme Optimization of Small Hard Tunnel Excavation Based on AHP and TOPSIS Algorithm
文献类型:期刊文献
中文题名:基于AHP-TOPSIS的小型坚硬隧道开挖掏槽方案优选
英文题名:Scheme Optimization of Small Hard Tunnel Excavation Based on AHP and TOPSIS Algorithm
第一作者:汪权明
机构:[1]贵州理工学院土木工程学院;[2]长沙矿山研究院有限责任公司
第一机构:贵州理工学院土木工程学院
年份:2019
卷号:0
期号:2
起止页码:94-97
中文期刊名:江西建材
外文期刊名:Jiangxi Building Materials
基金:资助项目号码:51868009;高速列车运营条件下自密实混凝土(SCC)动态性能演化过程及疲劳损伤属性研究
语种:中文
中文关键词:隧道开挖;掏槽方式;AHP-TOPSIS评判模型
外文关键词:Tunnel excavation;Gutting mode;AHP and TOPSIS evaluation model
摘要:为了选择某小型坚硬隧道开挖最佳掏槽方案,根据层次分析法(AHP)与逼近理想解排序法(TOPSIS)基本理论,建立AHP-TOPSIS评判模型,对开挖拟采用的3种掏槽方案进行综合评判优选。从安全、技术、经济三方面综合考虑影响开挖方案的评判指标,再细分为爆破对边帮影响、方案可操作性、炮孔总数、掘进循环进度、炸药单耗、炮眼利用率、循环耗时、米雪管消耗、米炸药消耗、掘进施工费用等十个角度分析综合,通过层次分析法计算出各评判指标的权重,利用TOPSIS法计算加权决策矩阵的理想解和贴近度,得出拟选的三种掏槽方案的综合优越度分别为:47.5%,55.4%,44.0%,从而确定第II种方案(六眼掏槽)最优,从而方案的可行性得到理论支持,能对实际工程决策做出科学、合理、可行的判断。
According to the basic theory of Analytic Hierarchy Process(AHP)and the TOPSIS method,an improved AHP-TOPSIS comprehensive evaluation model was established to perform the comprehensive evaluation on three optional cutting methods to scheme optimal cutting plan in a small hard tunnel excavation.Considering from safety,technology and economy three aspects affect the judging indexes of excavation scheme,blasting effect on slope,then subdivided into plan operability,total number of hole,the circulation progress,the specific charge,hole utilization,cycle time,consumption,and explosives,and snow tube consumption,construction costs,etc.Ten analyzed comprehensive.And then the weight of each evaluation index was obtained by the AHP method,followed by the estimation of its ideal point and the close degree through the TOPSIS method.Consequently,the synthetic superior degrees of the three optional cutting methods are 47.5%,55.4%,44.0%respectively.Obviously,the second optional cutting method is the best.Its feasibility and theoretical support,it can make scientific,reasonable and feasible to practical engineering decision of judgment.
参考文献:
正在载入数据...