登录    注册    忘记密码

详细信息

基于改进粒子群算法的离散制造车间柔性调度优化     被引量:10

Flexible Job-shop Scheduling Optimization of Discrete Manufacturing Based on the Improved Particle Swarm Optimization Algorithm

文献类型:期刊文献

中文题名:基于改进粒子群算法的离散制造车间柔性调度优化

英文题名:Flexible Job-shop Scheduling Optimization of Discrete Manufacturing Based on the Improved Particle Swarm Optimization Algorithm

作者:黎书文 张成龙 周知进

第一作者:黎书文

机构:[1]贵州理工学院机械工程学院;[2]茅台学院酿酒工程自动化系

第一机构:贵州理工学院机械工程学院

年份:2018

卷号:0

期号:11

起止页码:150-152

中文期刊名:组合机床与自动化加工技术

外文期刊名:Modular Machine Tool & Automatic Manufacturing Technique

收录:CSTPCD;;北大核心:【北大核心2017】;

基金:国家自然科学基金(51465009);贵州省教育厅青年科技人才成长项目(黔教合KY字[2017]218)

语种:中文

中文关键词:离散制造;粒子群算法;车间调度;柔性制造

外文关键词:discrete manufacturing;particle swarm optimization;job shop scheduling;flexible manufacturing

摘要:针对离散制造生产过程信息复杂、生产计划与作业计划难以均衡等问题,以提高产品质量,降低企业生产成本为目标,建立了面向柔性制造系统的车间调度模型,并设计了一种改进粒子群算法进行离散制造车间柔性调度优化。改进算法惯性权重能够余弦自适应调节,学习因子能够基于惯性权重动态变化。仿真实验结果表明,改进粒子群算法具有较快的收敛速度以及全局寻优能力。柔性车间调度对于缩短产品生产周期,提高生产线的生产效率,降低生产成本,提高企业的经济效益具有重要意义。
In order to improve the quality of the product and reduce the production cost, a job-shop model for the flexible manufacturing system is established, and an improved particle swarm optimization algorithm is designed for the discrete manufacturing of the discrete manufacturing process. The inertia weight of im- proved algorithm can be cosine adaptive adjustment, and learning factors can change based on inertia weight dynamic. The simulation results show that the improved particle swarm optimization algorithm has the advantages of fast convergence speed and global optimization ability. Flexible shop scheduling is of great significance to shortening the production cycle, improving the efficiency of the production line, and reducing the production cost as well as increasing the profit of the enterprise.

参考文献:

正在载入数据...

版权所有©贵州理工学院 重庆维普资讯有限公司 渝B2-20050021-8 
渝公网安备 50019002500408号 违法和不良信息举报中心