登录    注册    忘记密码

详细信息

强动压破碎软岩巷道再造多重承载结构全空间协同支护技术研究  ( EI收录)  

Full-space collaborative support technology for reconstructing multi-bearing structures in crushed soft rock roadways under strong dynamic pressure

文献类型:期刊文献

中文题名:强动压破碎软岩巷道再造多重承载结构全空间协同支护技术研究

英文题名:Full-space collaborative support technology for reconstructing multi-bearing structures in crushed soft rock roadways under strong dynamic pressure

作者:徐佑林 吴少康 周波 郑伟 吴旭坤 周泽 陈志松 张际涛 李彬 严红 张传玖

第一作者:徐佑林

机构:[1]贵州理工学院矿业工程学院,贵州贵阳550003;[2]中国矿业大学(北京)能源与矿业学院,北京100083;[3]贵州大学矿业学院,贵州贵阳550025;[4]安徽理工大学矿业学院,安徽淮南232001;[5]贵州黔诚力锦科技有限公司,贵州贵阳550081;[6]中国矿业大学矿业工程学院,江苏徐州221116;[7]国能神东煤炭集团有限责任公司,内蒙古鄂尔多斯017010

第一机构:贵州理工学院矿业工程学院

年份:2025

卷号:44

期号:7

起止页码:1720-1735

中文期刊名:岩石力学与工程学报

外文期刊名:Chinese Journal of Rock Mechanics and Engineering

收录:;EI(收录号:20252718715578);北大核心:【北大核心2023】;

基金:国家自然科学基金资助项目(51764010,51874109);2023年贵州省科技支撑计划(一般项目)资助项目(黔科合支撑[2023]一般305)。

语种:中文

中文关键词:采矿工程;应力分布;强动压破碎软岩巷道;再造多重承载结构;约束型钢管;高预应力锚固

外文关键词:mining engineering;stress distribution;soft rock roadway broken by strong dynamic pressure;reconstructing multi-bearing structure;binding steel pipe;high prestressed anchorage

摘要:为解决巷道及工作面开挖引起的区域应力复杂、强动压破碎软岩巷道围岩维护难题,以贵州打牛场煤矿1570轨道石门为工程背景,综合运用数值模拟、理论分析及现场工业性试验等多种方法开展研究。根据现场调查及数据监测,对1570轨道石门围岩大变形及支护构件失效特征进行了分析;利用泡水试验(结合XRD分析)、松动圈测试揭示了围岩自稳性差的原因;采用数值模拟揭示1570轨道石门开挖过程中应力分布规律,得出其变形破坏机制,并针对性提出再造多重承载结构全空间协同支护技术;通过理论分析得出混凝土钢拱架最危险截面的极限承载应力,确定使用的约束型钢管充填结构能限制采动引起的大结构运动。采用数值模拟分析再造多重承载结构支护后与无支护方式下应力分布及围岩变形控制效果,阐明了再造多重承载结构全空间协同支护技术控制原理。通过构建三层高强承载结构体,使浅部和深部围岩形成一体化高强度锚固体承载结构,从整体上调动围岩自身承载能力与整体抗变形能力,实现全空间立体支护系统,保证巷道稳定。基于上述研究,在井下进行工业性试验。结果表明,多重承载结构全空间协同支护技术对强动压破碎松软围岩巷道的变形控制具有显著效果。与原支护相比,巷道顶底板及两帮收敛量分别降低91.67%及88.33%,同时节约了巷道维修成本,为强动压破碎软岩巷道围岩控制提供了有效途径。
To address the challenges posed by complex regional stress and the maintenance of surrounding rock in soft rock roadways subjected to strong dynamic pressure crushing during excavation,this study focuses on the 1570 track stone gate of Daniuchang Coal Mine in Guizhou Province as the engineering context.A comprehensive research approach was employed,utilizing numerical simulations,theoretical analyses,and on-site industrial tests.Through on-site investigations and data monitoring,we analyzed the large deformation of the surrounding rock at Shimen on the 1570 track and the failure characteristics of the supporting components.The poor self-stability of the surrounding rock was investigated using water immersion tests(combined with XRD analysis)and loose ring tests.Numerical simulations were conducted to elucidate the stress distribution patterns during the excavation of the 1570 track stone gate,revealing its deformation and failure mechanisms.We specifically proposed a full-space collaborative support technology for the reconstructed multi-bearing structure.The ultimate bearing stress of the most critical section of the concrete steel arch frame was derived through theoretical analysis,confirming that the constrained steel pipe filling structure could effectively limit the significant structural movements induced by mining activities.The stress distribution and deformation control effects of the surrounding rock in the reconstructed multi-bearing structure were analyzed through numerical simulations,clarifying the control principles underlying the full-space cooperative support technology.By constructing a three-layer high-strength load-bearing structure,we integrated the shallow and deep surrounding rocks into a cohesive high-strength anchor solid load-bearing system.This approach harnesses the surrounding rock′s inherent load-bearing capacity and enhances the overall anti-deformation capability of the surrounding rock,thereby establishing a full-space three-dimensional support system that ensures roadway stability.Subsequent industrial tests conducted underground demonstrated that the full-space collaborative support technology for multi-bearing structures significantly mitigates deformation in roadways facing strong dynamic pressure crushing and soft surrounding rock.Compared to the original support system,the convergence of the top and bottom slabs of the roadway,as well as the two sides,was reduced by 91.67%and 88.33%,respectively.Additionally,this approach led to savings in roadway maintenance costs,providing an effective solution for managing surrounding rock in soft rock roadways subjected to strong dynamic pressure crushing.

参考文献:

正在载入数据...

版权所有©贵州理工学院 重庆维普资讯有限公司 渝B2-20050021-8 
渝公网安备 50019002500408号 违法和不良信息举报中心