登录    注册    忘记密码

详细信息

年径流变化的BP神经网络预报模型研究    

Study on BP Neural Network Forecast Model for Annual Runoff Change

文献类型:期刊文献

中文题名:年径流变化的BP神经网络预报模型研究

英文题名:Study on BP Neural Network Forecast Model for Annual Runoff Change

作者:李志新 赖志琴

第一作者:李志新

机构:[1]贵州理工学院土木工程学院

第一机构:贵州理工学院土木工程学院

年份:2018

卷号:36

期号:7

起止页码:10-12

中文期刊名:水电能源科学

外文期刊名:Water Resources and Power

收录:CSTPCD;;北大核心:【北大核心2017】;

基金:贵州省科学技术基金计划项目(黔科合基础[2016]1062)

语种:中文

中文关键词:年径流;神经网络;预报;模型

外文关键词:annual runoff;neural network;prediction;model

摘要:针对现有基于线性方法的年径流预报模型预报精度不高的问题,利用乌江洪家渡1963~2016年径流系列资料,以5~10月月平均流量作为预报影响因子,构建以年径流量为预报对象的BP神经网络模型,形成6-11-1的网络结构,并选取泛化能力强的贝叶斯规则法TRAINBR为训练函数。模拟结果表明,模型预报效果良好,对于年径流预报具有实用价值;BP神经网络模型相比逐步线性回归方法能更精确表达年径流预报因子与预报对象的映射关系;采用的训练函数TRAINBR能有效改善模型的泛化能力。研究成果可为径流预报提供参考。
For the annual runoff prediction, prediction precision of the existing models based linear method is not high enough, so the article used the annual runoff series of Hongjiadu during 1963-2016, the monthly average flow from May to Octoher as the input factors, the annual runoff as prediction object based the BP neural network model was estab- lished, which formed the 6-11-1network structure. TRAINBR, the Bayesian method of good generalization ability, was selected as training function. The simulation results show that the model has good prediction effect and practical value for annual runoff prediction. The BP neural network model can express the mapping relationship between annual runoff pre- diction factors and the prediction ohject more accurately than the stepwise linear regression method. The TRAINBR train- ing function can effectively improve the generalization ability of the model. The research can provide reference for runoff forecasting.

参考文献:

正在载入数据...

版权所有©贵州理工学院 重庆维普资讯有限公司 渝B2-20050021-8 
渝公网安备 50019002500408号 违法和不良信息举报中心