详细信息
文献类型:期刊文献
中文题名:未定权益随机变量在Banach空间的一些性质
英文题名:The Properties of Contingent Claim Random Variable in Banach Space
第一作者:迟楠
机构:[1]贵州理工学院理学院,贵州贵阳550003
第一机构:贵州理工学院理学院
年份:2025
卷号:55
期号:2
起止页码:250-256
中文期刊名:数学的实践与认识
外文期刊名:Mathematics in Practice and Theory
收录:;北大核心:【北大核心2023】;
基金:国家自然科学基金(61763004,62163008);贵州省科学技术基金重点资助项目(黔科合基础[2020]1Z054);贵州理工学院博士启动基金(XJGC20150411)。
语种:中文
中文关键词:未定权益;随机折现因子;无风险证券;模仿组合;广义正交分解定理
外文关键词:contingent claims;random discount factor;risk-free portfolio;imitate combination;generalized orthogonal decomposition theorem
摘要:在数理金融中一般讨论方差有限的随机变量构成的未定权益Hilbert L^(2)(Ω,F,P)空间.但在经济计量学中需要讨论概率分布的“偏度”与“峰度”,此时L^(2)(Ω,F,P)空间就不适用了.针对金融学二期模型和未来带不确定性的证券市场,将无限维未定权益空间L^(P)(Ω,F,P)(其中p≥2)定义为是一切p阶绝对矩有限的随机变量所构成的向量空间,其上定义范数:||y||p=E^(1/p)(|y|^(p)),■y∈L^(p)(P),从而L^(P)(Ω,F,P)(其中p≥2)为Banach空间当p>2时随机变量的概率分布可以是不对称的,利用LP空间上有界线性泛函表示定理得出了随机折现因子存在定理,并分析对数理金融学的意义;再利用Hahn-Banach定理得出了无风险证券的模仿组合,从而得到了未定权益空间上的广义正交分解定理。
In mathematical finance,we usually discuss about the contingent claim Hilbert L^(2)(Ω,F,P)space of the finite variance of random variables,but in econometrics we usually discuss the probability distribution of the skewness and kurtosis,at this time,the space L^(2)(Ω,F,P)does not apply.Aiming at the two phase model of finance and future uncertainty of the securities market,suppose all of the random variable whose p step absolute moment is finite consist the infinite dimension contingent claims space L^(P)(Ω,F,P)where p≥2,defining norm ||y||p=E^(1/p)(|y|^(p)),■y∈L^(p)(P),so we let it be a measurable space and a Banach space.The skewness of the probability space L^(P)(Ω,F,P)isn't zero when p>2.The probability distribution of the random variable can be asymmetric.Bounded linear functional representation theorem and Hahn-Banach theorem have been used in order to deduce random discount factor and imitate combination of the risk-free portfolio,which analyzing the meaning in mathematical finance.Therefore,generalized orthogonal decomposition theorem has been deduced in contingent claims space.
参考文献:
正在载入数据...